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NONLINEAR MODELING OF GATED RANGE TRACKER DYNAMICS
WITH APPLICATION TO RADAR RANGE RESOLUTION

1. INTRODUCTION

The primary goal of this report is to establish nonlinear dynamic models for an important class of
automatic range tracking systems, namely gated range trackers. A second goal is to use the resulting models
to gain insight into radar range tracking behavior in multiple-target environments. The class of range
trackers addressed in this work includes the "split-gate" system, which involves the generation of two gates,
the "early" and the "late" gates. These gates are positioned in time so that a portion of the echo pulse
passes through each gate. The tracking system adjusts the split gates so as to drive an associated error
voltage to zero [1, pp. 114-115]. The performance of such range tracking systems is well-understood in the
single-target environment, but erroneous tracks can result in the presence of interfering targets. Nonlinear
dynamic models such as those derived here can be helpful in studying such behavior.

By studying the response of this class of dynamical tracking systems under multiple-target conditions,
we hope to identify or characterize the ability of this feedback system to distinguish or resolve individual
targets or target groups. For example, if we imagine a situation in which two targets are separating from one
another, we are interested in characterizing the tendency of the tracker to focus ultimately on one target in
preference to another. This behavior can be thought of as a "resolving capability" or "resolving power" of
the tracker, and bears an interesting relationship to the information-theoretic notion of resolvability (which
has been discussed at length in other sources [see, for instance, Ref. 2 and references therein, Ref. 3, Chap.
7, and Ref. 41. Resolving power can be thought of as an ultimate limit based on properties intrinsic to
the composite returned signal, as opposed to resolving capability, which concerns the resolving power of an
actual tracker. Although the performance of the class of trackers under study may not be optimum, they
are nevertheless of considerable interest. In what follows, we use the phrase resolving power to describe
a property of a particular tracker or class of trackers, while we use the term resolvability in referring to
properties of the received data itself without regard to the tracker. Note that the term resolving power has
also been used to refer to the ability of a lens system to separate images of two objects in close proximity to
one another [5, p. 37].

An important benefit of analytical modeling of tracker dynamics is the possibility of predicting track
statistics and probability of target selection at formula speeds that are several orders of magnitude faster
than currently used pulse-to-pulse simulations. This report lays the foundation for such rapid predictions
by setting up a mathematical modeling framework that is amenable to analysis by powerful control systems
methods. Although the focus here is on deterministic analysis, the dynamical equations are also valid under
conditions of randomly fluctuating signals.

This report follows what can be called a "control systems approach," in the sense that gated range trackers
are modeled as nonlinear feedback control systems aiming toward an understanding of nonlinear effects and
stability. The first step in this approach is to carefully construct a dynamical model for the range trackers
under study. Control systems tools are highly relevant to the study of tracker performance in a multiple
target environment. Questions of track point stability (both deterministic and stochastic), probability of
tracking a given target, and optimal tracker design are readily posed in the language of control systems.
More importantly, once the system dynamic model is constructed, powerful analytical and computational
tools from control systems can be applied.

Manuscript approved January 23, 1992.
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A major outcome of the present work is a collection of analytical models that are useful in predicting a
range tracker's behavior, even when several targets are in the same range gate. These are nonlinear dynamic
models given in state space form that summarize the pulse-to-pulse dynamics of the tracker. The nonlinearity
of the models is an essential feature, since track points within a range gate are then identified simply as
certain invariant sets of the appropriate model. We show that track points correspond to equilibrium points
of the new models if random pulse-to-pulse variation of the received radar signal can be neglected.

To illustrate the potential benefits of our approach, we show interesting new results that provide stability
criteria for track points within the same range gate. These criteria can be interpreted as tracker resolving
power criteria in range, for targets in one range gate. The criteria are analytical in nature. By considering
the results of this paper in the light of resolvability results, one can see how well the tracker performs relative
to the theoretical limits.

The remainder of this paper is organized as follows. Section 2 concerns modeling and analysis of the
gated range tracker assuming a first-order track loop; Section 3 describes the practically more significant case
involving a second-order track loop. Section 2.1 contains the derivation of a novel fourth-order discrete-time
model of a gated range tracker (Model DT1). In Section 2.2, stability results for track points assuming this
model are derived. Section 2.3 illustrates the application of the results of Sections 2.1 and 2.2 to the centroid
problem. Section 2.4 is concerned with the derivation and analysis of a second-order continuous-time model
(Model CT1) that approximates Model DT1 when the pulse repetition interval is sufficiently small. The
development of Section 3, in which the case of a second-order tracker loop is considered, parallels that of
Section 2. In particular, Section 3 contains the derivation of two models, Model DT2 and Model CT2, that
are the natural extensions of Models DT1 and CT1, respectively, to the setting of Section 3. Conclusions
and some directions for further research are discussed in Section 4.

2. GATED RANGE TRACKER WITH A SINGLE INTEGRATOR IN THE TRACK LOOP

2.1. Discrete-Time Model DT1

Block Diagram and Notation

The block diagram in Fig. 1 is the starting point for the derivation of Model DT1.1 DT1 is the discrete-
time nonlinear gated range tracker model for the case of a single integrator in the track loop. The block
diagram includes the essential components of real gated range trackers, with a minimum of complexity. Both
the automatic gain control (AGC) system and the null tracker are shown.2

The notation of Fig. 1 is as follows. All signals are functions of the continuous time t. The signal E(t)
is the received sum channel voltage signal analytic envelope after passing through the receiver IF filter but
before AGC normalization. The scaled signal U(t) := g(t)E(t) results following passage through the AGC.
where g(t) denotes the time-varying AGC gain. In reality, the AGC and the IF filtration are performed by
the same receiver stages. For convenience, however, these functions appear separated in the block diagram.

In a tracking radar, the aim of the range tracker is to lock on to and track a target in range! as opposed
to obtaining a precise estimate of actual target range. The latter is the function of an instrumentation radar
[5, Chap. 3]. The estimate of the target slant range in a tracking radar is therefore referred to here as the
estimated relative range, and is be denoted by p(t) (see Fig. 1).

The quantity p(t) is fed back at the end of each epoch to define the time reference for the application
of sum and difference weighting patterns to the scaled signal U(t), which results in the sum and difference
error detector laws. By a suitable choice of weighting patterns, these functional blocks represent a broad
class of range gates, as discussed later in greater detail. The sum detector law provides a measure of signal

'DT1 is an abbreviation for Discrete-Timc 1.
2 A simpler model incorporating only the null tracker was presented in 1958 by Amiantov and Tikhonov [6]. There, the

emphasis was on the effects of noise, and the model used was first-order and linear.
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Fig. 1 - Gated range tracker with AGC

strength that drives the AGC; the error detector law senses the "null" of the tracker. The difference, or
error, detector law block in Fig. 1 summarizes the effect of the standard range null sensing subsystem. This
subsystem consists of an early gate, a late gate, and a comparator [7, Art. 10-31; 1, pp. 114-115]. The
postulated equations governing the sum and difference detector blocks are introduced below.

The signal V(t) is the AGC loop voltage, as identified in Fig. 1. The positive constants fi, K, and
TAGC are, respectively, the (internal) fixed AGC gain, tracker gain, and AGC time constant. Sample-and-
hold operations are represented by the symbol ZOH (for zero-order hold), with sampling performed at time
instants tk = kTpp1. Here k is any positive integer, and Tppl is the pulse repetition interval (also referred
to as interpulse period, epoch length, pulse-to-pulse duration). The ZOH immediately following the sum
detector block in Fig. 1 yields as output a measure of overall signal strength that drives the AGC loop; the
output of the ZOH following the difference detector is the difference between early and late gate outputs.
Each of these ZOH outputs is a constant during any epoch, the value of which is determined by the evolution
of the input voltage variables over the immediately preceding epoch, and by the estimated relative range
at the conclusion of the that epoch. (This will be made precise in the following.) The appearance of the
third ZOH in Fig. 1, following the comparator and preceding the detector blocks, amounts to invoking the
following reasonable assumption: The error drive to the detector blocks (i.e., the relative range estimate used
as a reference for the kernels in the associated integrations) is updated at the end of each epoch, regardless
of the precise pulse arrival time within an epoch.

Analytical modeling of the gated range tracker based directly on the block diagram of Fig. 1 is complicated
by the following difficulty. Although we are mainly interested in summarizing the dynamics on a pulse-to-
pulse (i.e., discrete-time) basis, Fig. 1 leads to an analog model. Solving this model on a pulse-to-pulse basis
is seldom possible (this depends on the detector laws), and even in cases where it is possible, the resulting
discrete-time model can be unwieldy. This observation is in part based on lengthy computations that need
not be reproduced here.

Two steps are now taken to deal with this difficulty. Typically, the mass of the sum weighting pattern
is concentrated in an interval of length much less than the size of the pulse repetition interval TpRI. There-
fore the AGC gain g(t) does not vary significantly over a single epoch. This is true, even for fast AGC
systems. Thus, we can insert an artificial zero-order hold operator following the AGC loop integrator block
((TAc;C.)-1 ) in the block diagram (see Fig. 2). Next, waveforms are divided into their components during
epochs, i.e., for k = 0,1, 2_ ., define the kth epoch It as

Ik := It : kTPRIf < t < (k + 1) TPRI}.

3
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V[k] L | lun ' Lid
V( k) ZH

T s S[k] p[k|

Fig. 2 - Tracker with artificial zero-order-hold

More precisely, for any continuous-time variable q(t), we introduce the notation

(,, k) { q(T + (k + 0.5) TpRI), for -T1 < r < T1,
0, otherwise,

for k = 0,1, 2,..., where T1 := 0.5 TPRI.

The notation introduced in Eq. (1) was chosen to simplify manipulations arising in the following. Re-
garding this notation, note that the fact that T can take negative values does not present a problem. Indeed,
for T = -T1 , physical time is given by t = T + (k + 0.5)TpRI = kTpa1, which is never negative. In using this
notation, it is convenient to redraw Fig. 1 as in Fig. 2, which is to be construed as depicting Fig. 1 within
epoch Ik, modified to include the artificial zero-order hold operator in the AGC loop. The blocks labeled as
"sum gate" and "difference gate" in Fig. 1 are now identified as sum and difference detectors Ws and WD
associated with weighting patterns ws and WD, respectively.

The following additional notation will be useful. For any variable q(t), and any integer k > 1, denote by
q[k] the value of variable q(t) at the end of epoch Ik-1. More precisely, q[k] denotes the following limit taken
as r approaches T1 from the left:

q[k]: = lim q(T, k -1)
i- TTi

= lim q(r + (k -0.5) TPRI)

= q((kTpRI)-), (2)

where the superscript "-" signifies that in case the function q(t) has a discontinuity at t = kTpRI, we take
the limit from the left. For instance, p[k] means p((kTpRI)-), and V[k] means V((kTprj)-). This notation

will be useful in writing a discrete-time model for the range tracker based on Fig. 2. The notation lends
itself to graphical interpretation as in Fig. 3, where a "raster" type of sketch for functions q(T, k) is used. In

this representation, each epoch corresponds to exactly one raster line. The signals q(T, k) vary continuously
on the raster lines, while signals q[k] vary discretely and summarize functional values at the right end points
of the raster lines, with the limit taken as r increases to its final value T1 on each raster line.

4
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In the following, in keeping with the notation introduced above, the same variable name is used for
differing representations of a signal. The representation used is implied by the manner in which arguments
of the signal are denoted. That is, q(t) is always understood to be a continuous-time signal with time t being
any nonnegative real number; q(T, k) is a representation of q(t) in the raster form shown in Fig. 3, and is
thus a mixed continuous-discrete representation; and q[k] is a discrete-time signal, obtained by sampling the
raster signal q(T, k) as discussed above and illustrated in Fig. 3. The following terminology is introduced for
the various independent time variables: t is real time, k is epoch time, and w is intra-epoch time.

Before deriving the desired discrete-time model, the relationships governing the sum and difference de-
tector blocks must be stated. For the sum detector block, denoted Ws in Fig. 2, we have

S(T, k) = J, IU(c, k)12 WS(U - p[k]) da.

As for the difference detector block, denoted WD in Fig. 2, we have

D(T, k) = fT I U(a, k) 2 WD(O - p[k]) da.

(3)

(4)

The forms of detector laws given by Eqs. (3) and (4) are very versatile and powerful; a wide variety of
systems can be modeled by adopting suitable sum and difference kernels (weighting patterns) WS and WUD.

For example, when ws is chosen to be an even pattern, and WD an odd pattern (as depicted in Fig. 4). then
detectors of Eqs. (3) and (4) implement a common form of centroid tracker. The shape of IVS determines

the range gate width or aperture. In common radar terminology, the lobe occurring for a negative in Fig.
4d represents the "early gate," and, likewise, the lobe for a positive is called the "late gate.

U(T,k)

p('r,k) -p(t,k)

(a) "Sum" detector subsystem (b) 'Difference" detector subsystem
(early and late gates)

w (o)
S

(c) Generic sum weighting pattern

wD(o)

0 

(d) Generic difference weighting pattern

Fig. 4 - Detector Laws

6
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According to Eqs. (2), (3), and (4), the discrete-time variables S[k], D[k] are given by

Tl
S[k] = j IU(C. A -_ 1) 2 ws(o' - p[k - 1]) do'. (5)

To

D[k] = J U(or,k-1)12WD(f -p[k -1])dda. (6)
-T,

Equations (5) and (6) prove useful in the model derivation, which is pursued next.

Derivation of Model DT1

With notation now established, we proceed with the derivation of a model in state equation form de-
scribing the discrete-time dynamics of Fig. 2. The variables of most interest in Fig. 2 are the relative slant
range estimate p[k] and the AGC voltage V[k]. Figure 2 can be used to write dynamical equations satisfied
by these variables.

For instance, it is clear from the block diagram that

U(TI k) = E(T, k)g[k]

= E(T, k)e V[k(7)

Also, from the (TAGCS) 1 integrator block, accounting for the fact that V[k] is the initial value of V(T, k) at
the beginning of the kth epoch and noting the effect of the zero-order hold following Ws in Fig. 2, we have

V (T, k) = lim tV(o, k - 1)} + (S[k] ) di
V k TT TAGC - T k

V[k] +-i TC (S[k] - 1). (8)

Therefore,

V[k +l = 11 i~M V(7, k)

TIT,

= V[k]j+T (S[k]-1). (9)
TAG C

Now, Eqs. (5) anrd (7) imply that S[k] is given by

T

S[k] = / U(o, k - 1) 2 ws(a- p[k - 1]) do'

. -TL~

f 2 e- 2v[k-1] j E(o', k - 1)12 ws(o' - p[k - 1}) do'. (10)

Equation (10) is now substittited in Eq. (9), yielding

V[k-1] [k] + -7 RI ( E2e 21A / k - 1)|2w(a- p[k - 1]) do' - . (11)

7
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Similarly, Eqs. (6) and (7) imply that D[k] is given by

RT

D[k] = I U(o, k -1) 2'WD(O'- p[k - 1]) da

J-TI~~

= i3 2e-2V[k-1] J iE(a, k - 1)12 WD(0'- p[k - 1]) da. (12)

From the blocks in Fig. 2 corresponding to the tracker, we obtain

p(T, k) = p[k] + K(T + Ti) D[k]. (13)

Taking lim of Eq. (13) gives
T IT

p[k + 1] = p[k] + KTPRI D[k]. (14)

Using Eqs. (12) in (14) now yields

T
1

p[k + 1] = p[k] + Kf 2 'pRe2V[k l JE(o', k - 1) 2 WD(o- p[k - 1]) da. (15)

Equations (11) and (15) are a coupled pair of second-order difference equations for the variables V[k] and
p[k]. For ease of reference, these two equations are collected to form the first representation of the dynamics
of the range tracker of Fig. 2:

p[k + 1] = p[k] + K/32 TpRe-2V[k-1] J JE(o, k - 1)12 WD(o - p[k - 1]) da, (16a)
-T.

V[k + 1] = V[k] + f RT (f2e-2V[k-1] J IE(o, k -1)2 WS(- p[k - 1]) d' - 1) (16b)

Equation (16) is a self-contained description of the evolution of the variables p[k], V[k], and its solution
requires knowledge only of the initial conditions on these variables and of the received signal E(T, k).

For many considerations, including those related to questions of stability, it is often useful to recast
difference equation models such as Eq. (16) in the so-called state space form. In this form, only first-order

difference equations appear. To derive a state space representation from Eq. (16), we introduce unit-delayed
signals associated with p[k] and V[k]. These are given by

pd[k] := p[k - 1] (17a)

and
Vd[k] := V[k - 1], (17b)

respectively. Model DT1 is given by the following system of four first-order difference equations. This is
a state space representation for the dynamics of Fig. 2 and is indeed equivalent to the pair (Eq. (16)) of
second-order difference equations.

Model DT1:

p[k + 1] = prk] + J(!32 T 21iie[2XA'] / E(o7, A - 1)12 t/)((J - p, [A-]) do' (18a)

pl[k + 1] = p[k] (18K)cT,~~~~~~~~~~1

V[k + 11 = V[k] + PRI (2 1212Ci[A] / E(o7. A: - 1)12 o',(T -_p,])d( ' l (18c)

V,1 [kA + 1] = VI[Ak. (18d)

8
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Equation (18) is the desired four-dimensional discrete-time model describing the gated range tracker for
the case of a single integrator in the track loop. The model is written in state equation form, with state
vector (p[k], pd[k], V[k], Vd[k]).

It is important to note that the echo return signal E has been treated in a very general way in the
derivation of this model, which allows both deterministic and stochastic signals E. In the case of a stochastic
return signal, E in Eq. (18) is a stochastic process, the outputs of the error-detector laws are stochastic
processes, and the Model DT1 should be treated as a system of stochastic difference equations.

In the next section, this model is used to derive criteria for deterministic stability of track points in a
fixed range gate.

2.2. Track Points and Stability of Model DT1

Intuitively, we might expect that track points of the gated range tracker of Fig. 2 correspond to equi-
librium points of Model DT1.3 In reality, however, Eq. (18) may fail to have equilibrium points because of
the (random) variation of the received radar signal E(o', k - 1) between epochs. Track points can then be
thought of as trajectories of the Model DT1 in which p[k] = a constant = pd[k], but V[k] is allowed to vary
with E(a, k - 1). These trajectories, when they exist, are invariant sets of Eq. (18). To simplify the analysis
below, it is assumed that the received signal E has no pulse-to-pulse variation. Under this assumption, track
points can be identified with equilibrium points of Eq. (18). First, the equations for an equilibrium are
derived.

At an equilibrium point of DT1, if one exists, we require p[k+-l] = p[k], pd[k+1] = pd[k], V[k+1] =V[k],

and Vd[k + 1] = Vd[k]. Referring to Eq. (18), it follows that an equilibrium (o*, p*d. V*, Vd*) satisfies

P= Pd, (19a)

V* =VEd*, (19b)

as well as
rTJ JE(o', k - 1)12 WD(o - p*)do' = 0, (19c)

T
o2C j iE(o', k - 1)12 ws(o' - p*)da - 1 = 0. (19d)

To solve for an equilibrium, we first solve Eq. (19c) for p*, giving, perhaps, multiple solutions. Next, these
values are substituted for p* in Eq. (19d), and we attempt to solve for the equilibrium voltage V*.

If the only variation in E between epochs is a scaling of some base waveform, then Fig. 4d indicates that
a solution of Eq. (19c) for p* may exist. However, in this case Eq. (19d) will not be solvable for V*. Thus,
the relative slant range may in principle be estimated without convergence of the AGC. This is an example
of a track point that is not an equilibrium point of Eq. (18).

Now assume, that the received pulses in all epochs are identical waveforms. Then E(T, k) is independent
of k, and we can write

E(r, k) =E(T, 0) for all T, k

Eo(v). (20)

3 An equilibrium point (or fixed point) of a discrete-time system x[k + 1] = f (x[k}) is defined as a vector ( for which =f ().

9
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Equations (19c), (19d) for an equilibrium can now be simplified to yield

FD(P*) = 0 (21a)

2e 2 V Fs(p*) - 1 = 0, (21b)

where FD (p) is the range error function

T.
FD(P) I Eo(a)1 2

WD(O - p) da, (22a)

and Fs(p) is defined as

FS(P) = j IEo (a)12 ws(a - p) du. (221))

With the assumption of Eq. (20), it is clear from Fig. 4 and Eq. (21) that equilibria will typically exist. and
that the number of equilibria depends on the waveform EO(T) and the null detector curve 7w"D(T). Moreover.
since Eq. (21b) can have no more than a single solution for V* corresponding to a given value of p*. it
follows that track points can be identified with equilibrium points when Eq. (20) holds.

It is interesting to note that if the received pulses are identical up to a time shift, as in Eq. (20). the
dynamical equations (18) are autonomous. That is, EO(T) does not appear as an external input. but rather
as an integral part of the dynamics. Only pulse-to-pulse variations in E(T. k) (i.e.. variation of E(T. A-) With
k) could represent external inputs to the model.

To study equilibrium point stability under the assumption of Eq. (20), it is convenient to rewrite the
model (Eq. (18)) in the light of Eq. (20) and the notation introduced by Eq. (22). We have

Model DT1 for Periodic Received Waveform:

p[k + 1] = p[k] + KTpRI ! 2e-2V,[k]FD(pd[k]) (23a)

pd[k + 1] = p[k] (23b)

V[k + 1] = V[k] + TPRI (02,-2V[k FS(Pd[k]) -1) (23c)
TAGCC

Vd[k + 11 = V[k]. (23d)

The Jacobian matrix of Eq. (23) evaluated at an equilibrium, denoted J, is given by

1 a 0 0

1 0 0 0(24)
J = 0 b 1 c .(4

0 () I 0

where the scalars a, b, c are defined as follows (here a prime denotes differelitiatioll with respect to the
argument of a function):

a = KJ32 TPnC-2V FD(P*), (25a)

0j2 Ti,,nC-2 V'
b : n F !(p*) (25b)

TAGC 2' F

C -21X2 TI'nl 21 VF * (25c)
TxAC.('

10
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A classical stability theorem [8, Appendix A] implies that the equilibrium (p,*p*V*V*) is asymptotically
stable if each eigenvalue of J lies (strictly) within the unit circle in the complex plane. If any eigenvalue has
magnitude greater than unity, the equilibrium is unstable. 4

The matrix J is seen to be block lower triangular, so that its eigenvalues are those of the lower right and
upper left 2 x 2 blocks. The characteristic polynomial of the lower right block is

P1 (A) := A2 - A + 242 TPRI 2 V* Fs(p*), (26)
TAGC

while that of the upper left block is

P2(A) A2=A2 A - K 2 TpaIC-2V Ft (p*). (27)

Determination of conditions for stability of these characteristic polynomials is facilitated by the following
result (see, for instance, Ref. 8).

Lemma 1 (Jury's Test for Second-Order Systems). A necessary and sufficient condition for the zeros of the
polynomial

p(A) = a2A2 -+ aA + ao (28)

(a2 > 0) to lie within the unit circle is
p(l) > 0, (29a)

p(-1) > 0, and (29b)

lao < a2. (29c)

Applying Lemna I to pi(A), we see that Eqs. (29a) and (29b) are trivially satisfied due to the positivity
of lEo(a) and ws(uJ p*) (see Fig. 4), and that Eq. (29c) is equivalent to

2)32 TpRIe-2V' Fs(p*) < 1. (30)

The equations for an equilibrium allow simplification of Eq. (30) to

TAGC > 2TPRi. (31)

Equation (31) is usually satisfied in practical systems, so that it does riot represent a critical test for stability.
However, it is interesting to note that Eq. (31) does represent a necessary condition for the existence of at
least one stable equilibrium point under the assumption of a periodic received signal: The AGC loop time
constant must be greater than twice the length of the pulse repetition interval.

Applying Lemma 1 to the polynomial P2(A), we find that Eq. (29a) asserts

FD[() < 0, (32)

and that this implies Eq. (291)) for P2(A). Equation (29c) is found to assert

IF(p*) < (K TpR)-'. (33)
Fs (p*)

'Cases in which at least one cigenvalue lies on the onit circle are known as critical cases in stability. These requirc nonlinear
analysis to determine even the local stability properties. Note that arbitrary small perturbations in the model force critical
eigenvaloes off the ounit circle. Ifence, if a robost form of asymptotic stability is desired, it is necessary and sufficient that all
the eigenvalu es lie wvithin the un it circle.

11
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Combining Eqs. (32) and (33) gives the requirement

0 < - FD(p*) < (K TpaIt)I Fs(p*). (34)

Satisfying Eqs. (31) and (34) guarantees the asymptotic stability of the equilibrium point (Ip, Pd.*, V*) =

(p*, p*, V*, V*) of Eq. (18). Put another way, this equilibrium point is stable if the following three conditions
are satisfied:

FS(p*) < 0, (Ci)

KTPaRI + Fs(p*) < °, (C2)
Ft (p*)

TAGC > 2TpRI. (C3)

This form of the stability conditions is easily checked to be equivalent to Eqs. (31) and (34). Considering
the shape of the null detector curve WD(a) depicted in Fig. 4(d), condition (CI) on the slope of the range
error curve explicates various observations (e.g., Ref. 9) regarding the relationship of closeness of targets:
their relative radar cross sections; and the tendency of the range tracker to lock on to either of them. ori on
to an artificial track point (centroid).

The next theorem summarizes these remarks.

Theorem 1 (Track Point Stability: Model DT1). Under assumption of Eq. (20), the equilibrium, point
(p*p*, V,* Vd*) = (p*p*V,*V*) of Eq. (18) is asymptotically stable by the linear approximation if and only if
(C1), (C2), and (C3) hold.

Condition (C2) may be construed simply as providing an upper bound on the tracker gain K, which is
achievable by appropriate choices of tracker parameters. Similarly, (C3) is a blanket condition that must be
satisfied, even for the simplest case of a single target present, for stable tracking to be possible. Hence, a
track point for which only (Cl) holds might still be thought of as resolvable in the senseC that a modification
in tracker parameters would ensure satisfaction of (C2) and (C3) as well as (Cl).

2.3. Two-Target Example using Model DT1

A simple illustration of Theorem 1 is now given. Let Eo(a') consist of a pair of separated but identical
triangular pulses, corresponding to two point scatterers in a single range gate. The same example is treated
in Burdie [10, Sec. 5.2.1] by using Woodward's [3] autocorrelation-based ambiguity function range-resolution
index. The triangular pulse shape reflects the effect of convolution of the IF matched filter impulse response
with an assumed rectangular pulse shape of the received signal. As shown in Fig. 5, the targets have delays
ro and ro + p, respectively. For simplicity, suppose the pulses each have amplitude unity, that they have
zero relative phase, and that each has a pulse width Tp. Theorem 1 can be used to stu(ly track points
and their stability as a function of the parameter p, the separation between the targets. For the current
illustration, stability is examined in detail only for the centroid target. Thus, the conclusions reached concern
the possibility that the tracker converges on this false target. This possibility undermines the ability of the
range tracker to resolve the actual targets. Figure 6 shows the assumed forms of the sum and difference
weighting patterns ws and IUD, respectively. As is clear from the figure, the weighting patterns are assumed
to be nonzero over a range of length precisely T0. In addition, it is natural to assumee that (C3) holds, i.e.,
that TAGC > 2TPRI.

By using Eqs. (21a), (21b) for an equilibrium, we find that only two equilibrium points occur for It > 2T1.
These correspond to the actual targets, and therefore have delays pt = r(J and p' - r() + /p, respectively. To

12
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study the stability of these equilibria, we apply Theorem 1. Condition (Cl) holds for both p* and p*. This
can be seen by noting that

WDI(g) = 26(a) - 6 (a- -6(a + 2P (35)

(see Fig. 6(c)), so that, for p > 2Tp,

FC(p~) *,- J |Eo(a)l
2 wD(a- p*) da = -2 (36)

-T'

for i = 1, 2. Condition (C2) simplifies to

K < TP (37)
6TPR~I

Hence, the targets are resolved for delays y > 2Tp if the tracker gain K is bounded as in Eq. (37).

As IL is decreased below 2Tp, we expect the appearance of a "centroid track point" at a delay p* between
the estimated relative ranges p* and p* of the actual targets. We would expect the centroid to be initially
unstable, achieving stability as the separation p between the targets is made smaller. Theorem 1 is now
used to quantify this intuition, and indeed to specify the separation li, below which the centroid is stable.
The importance of this question stems from the fact that the centroid track point acquires stability only at
the expense of the degree to which the tracker can resolve the actual targets.

The centroid track point appears as p is decreased below 2Tp. The delay corresponding to this track
point is, by symmetry, given by

P3 = 'o + 2 (38)

See Fig. 7. The reason that the centroid track point does not occur for /I > 2T, is simply that there would
then be no overlap between the weighting pattern ws(a - p*) and Eo(a). Equation (21b) for an equilibrium
would then be unsolvable for the AGC voltage V*. For the situation depicted in Fig. 7. it is easy to check
that (Cl) is not satisfied, implying instability of the centroid. Thus, the centroid can be stable only if the
triangular pulses overlap, which occurs for p < Tp. Moreover, (Cl) must be satisfied for sufficiently small l.
as can be seen by noting that for p = 0 the centroid and the two targets coincide. Hence,. the centroid is a
stable track point for a sufficiently small target separation.

As p is decreased below Tp, the quantity on the left side of (Cl) (the slope of the range error curve at
the centroid) decreases monotonically. The centroid becomes stable at the critical value Ip = In, for which
this quantity vanishes. Denoting by P(a) the triangular pulse waveform shown in Fig. 8. it follows that /p,.
is the solution to

8P2(a - ro)ja=r_+,' = 2P2 (a -+ro)l =r 1
, (39)

satisfying p < Tp. Equation (39) simplifies to

4p2 (A) = p2 (P- ) (40)

14
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By using the graph of P(a) depicted in Fig. 8, this can be rewritten as

4 (T) ( 2 ) 4(§l) (2 (41)

which can be simplified to 3()2() *+ 1 (42)
Solving Eq. (42) and disregarding the solution with T- > 1, we obtain

Pc - 2 T (43)
3

Hence, the centroid track point is stable for target separations smaller than two-thirds of the pulse width.
but is unstable for greater separations. It is interesting to compare this result with that obtained by Btrdic
[10, Sec. 5.2.1] using Woodward's approach. There it was concluded that resolution would be achievable only
"with great difficulty" (if at all) for separations less than Woodward's time resohltion constant. which for
this case happens to coincide exactly with the figure derived above: 2T,. We emphasize that this apparent
numerical agreement between the results of the two approaches does not imply that the same concltusion is
reached. The approach presented here results in a definite yes or no conclusion on resolving power of the
range tracker for any target separation, whereas Woodward's approach gives a somewhat vague statement of
relative resolvability. (The vagueness of the conclusions reached by using ambiguity functions was a weakness
acknowledged by Woodward [3], and was the primary motivation for subsequent work in resolvability.)

2.4. Approximate Continuous-Time Model CT1

Derivation of Model CTi

The discrete-time model of Eq. (18) studied in the foregoing admits a lower order coritinutous-time
approximation, under the assumption that the size TPRt of the pulse repetition interval is very small in
relation to other model parameters. In this section, a pair of first-order ordinary differential equations
approximating the model (Eq. (18)) is given and briefly studied tinder this assumption. It is convenient to
focus on the representation of Eq. (16) in terms of a coupled pair of second-order difference equations (this
is equivalent to Eq. (18)).

Equation (16) is rewritten in the form

( p[k + 1]- p[k] )= K/32e-2V[k-1] / PE(a, k )2WD(U p[A- 1]) da, (44a)

TV p + ] -~k JTI 

TACc ~(V[k±1]- V[k]) = 32e-2V[k-1] j TE(a, k - 1)12,115(( - p[A.- 1]) d( - 1. (44b)

The terms in braces on the left sides of Eqs. (44a) and (441) approximate derivatives with respect to time t
of the associated continuous-time functions, for sufficiently small valtes of TpRI. To see this. recall that for
any continuous-time signal q(t), the associated discrete-time signal q[k] is obtained by a proce(ldtre by which
q(t) is sampled with a sampling interval of length TpnR. Replacing the terins in braces by tiiine derivatives
and expressing the right sides of Eqs. (44a) and (44h) in terms of the original (continuiouts-tilte signlals yields
a continuous-time model. Note that this is not the same as taking lint of Eqs. (44a) and (441h). Indeed.

the result of such an operation would be meaningless, considering that the contititiotts-discrete received signal
E(r, k) also depends on the parameter TpRn, and this dependence is such that the limit as lin would not

be well defined.

16



NRL REPORT 9371

To proceed, suppose real time t is related to epoch time k by the approximate formula t lvTpI. Then
the left sides of Eqs. (44a) and (44b) are approximately dp(t) and TAGC dv(t), respectively. The quantities
V[k - 1], p[k - 1] appearing in the right sides of Eqs. (44a) and (44b) can he replaced by the continuous-
time functions V(t), p(t), respectively. Finally, use Eq. (1) to get E(a, k - 1) = E(£ + (k - 1)TpRI) for
0 < a < TPRI. This inequality is clearly satisfied by (7 in the integrations of Eq. (44). Therefore, approximate
E(£9, - 1) in Eq. (44) by E(£ - TpR± [ ]TPRI). The resulting continuous-time model is

Model CT1:

dp(t) = Kfl 2e- 2 V(t) (aE -TPr + [T TPRI) I WD( - p(t)) dcr, (45a)

TAGC -) = B2f-2 V(t) (C TP 1 - j TPRI) WS(a - p(t)) da -11 (45b)

where the standard notation [x] is used to denote, for a real number x, the greatest integer less than or
equal to x. Equation (45) is the continuous-time model approximating the original discrete-time model (Eq.
(16)) (equivalently Eq. (18)). We refer to this model as Mlodel CT1. Note that Eq. (45) is a second-order
differential model. whereas the original discrete-time model is fourth-order. Note also that Eq. (45) can
represent either an ordinary differeiltial system or a stochastic differential system. corresponding to the
statistical character assumed of the target return signal E.

Next we extract from Eq. (45) a differential model corresponding to the discrete-time model (Eq. (23)),
which applies in case the received pulses in all epochs are identical waveforms. Assume that E(t) is periodic
with period TPRI. Then Eq. (45) becomes

Model CT1 for Periodic Received Waveform:

dp(t) _ K32-2c 1(t) / lEo(7)12 WD(u7- p(t)) da, (46a)

,Il/(t) 2[VtiTAGCdt 32\ 2 V (t) BE(a((7)12 ivs(a - p(t)) du - 1, (46b)

where the notation EB)(aT) (in favor of E(a)) has been used in analogy with the discrete-time case. It is
straightforward to rewrite Eq. (46) in terms of the notation FD(p(t)). Fs(p(t)).

Stability Analysis for Model CT1

Stability of equilibria for the deterministic continuous-time model (Eq. (46)) is now considered briefly.
An equilibrium point (p*, V*) of Eq. (46) solves the same pair of algebraic equations (21) that arise in the
discrete-tirrmc setting. Stability of an equilibrium is now ascertained by verifying that the eigenvahles of the
Jacobian matl'rix of Eq. (46) at the equilibrium have negative real parts. This Jacobian matrix, also denoted
.J1 is given by

J T- 1 ( a O ) (47)

where the scalars o. b.( are as defined in Eq. (25). Since .J is triangular, its cigenvalues are identical to
its diagonal elements a and e. both of which are real. It is easy to see that a is negative precisely when
(CI) holds,. and that c is enisured negative by the positivity of tle sumll weighting pattern w's. Hence (C1) is
suffitient for stability of an eqlliliblrillInl point of the approximate contimnotis-tirmie model (Eq. (46)). This is
state(l iore formally in the following theorem, which also relates this stability result with Theorem 1.

17
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Theorem 2 (Stability for Model CT1). The equilibrium point (p*, V*) of the approximate continuous-time
model (Eq. (46)) is asymptotically stable by the linear approximation if and only if (Cl) holds. Recall that
this condition requires

-Td~~~FD1(P*) =-_ gEo (,) 12 WI(o-p*)dor < O.
-Ti

Moreover, if TpRI is sufficiently small, then stability of the equilibrium (p,*V*) for the approximate model
(Eq. (46)) implies that of the equilibrium (p,*p,*V,*V*) for the original model (Eq. (23)).

3. GATED RANGE TRACKER WITH TWO INTEGRATORS IN THE TRACK LOOP

3.1. Discrete-Time Model DT2

The block diagrams of Figs. 1 and 2 contain a single integrator (K) in the track loop. A more common
gated range tracker design, considered next, uses two integrators in the track loop. The needed modifications
to Fig. 2 are depicted in Fig. 9, where only the dynamics from D[k] to p[k] are shown. The remainder of
the system is unchanged from Fig. 2. The first design can be obtained as a special case upon setting g1 = 0.
92 = K in Fig. 9. However, as noted by Hughes [11], typically gl is significantly greater than g2 in practical
designs using two integrators in the track loop. This provides further motivation for the analysis of this case.

Fig. 9 - Dynamics of D and p in second order track loop.

Derivation of a discrete-time model for the revised block diagram, Model DT2, parallels the derivation
leading to Eqs. (16) and (18) in Section 2.1. Hence only a brief summary of the derivation is necessary.
Referring to Fig. 9, we have for the new dynamic variable U(r, k)

v(7, k) = v[k] + gj (T + Tt)D[k].

Hence
v[k + 1] = v[k] + gjTpenD[k].

Also,

p(7, k) = p[k] + f (v(u, k) + g2 D[k]) do

= p[k] + (T + Tt)(m[k] +±2D[k]) + 0.5gtD[kJ(T + Tm )2.

18

(Cl)

(48)

(49)

(50)



NRL REPORT 9371

Therefore, the variables p[k] and v[k] satisfy the following pair of difference equations, in which D~k] is to

be viewed as an input as specified in Eq. (12):

p[k + 1] = p[k] + TpRt(v[k] + 92 D[k]) + 0.59g TpRI D[k], (51a)

e[k + 1] = P[k] + gs Tppj D[k]. (51b)

Since the remaining dynamics of Fig. 2 are not altered by the introduction of an additional integrator in
the track loop, a discrete-time model for Fig. 2 modified by Fig. 9 is given by

p[k + 1] = p[k] + TpRiv[k]

T,

+/32 TPRm(92 + 0.5ysTpRt1e 2V[kl] f E'(cr k-1)12 WD( - pk-1]) da (52a)

V[k + 1]= V[k] + -RI (2e-2V [k 1 J E(u, k -1)l2 wS (o - p[k - 1]) da - 1) (52b)
TACC T.

Tl

+1 = iJl] +- gj32 TPRIe-2V[k-1] J E(u, k-1)12 -LD( -p[k - 1]) da. (52c)

Note that each of Eqs. (52a) and (52b) is second order, while Eq. (52c) is first order. The model (Eq.

(52)) is thus fifth order. An equivalent state space description of the model (Eq. (52)) is

Model DT2:

p[k + 1] = p[k] + TpRi v[k]

Tl

+/32 TPRI (92 + 0.591 TPRI ) 2VXi[k] J E(u, k - 1)12 WD(U - P[k]) du (53a)

pd[k + 1] = p[k] (53b)

V[k + 1] = Vk] + TPRI (/ 32C2Vd [kT IE(a, k - 1)12 WS (a-pd [k]) da-1) (53c)
TAGC E-Tl /

Vd[k + 1] = V[k] (53d)

m[k + 1] = v[k] + 91 132 TPRme-2V[kl f IE(u, k - 1)12 wD(u - pd[k]) da, (53e)

where the delayed variables pd. 1,, are as defined in Eq. (17).

Equation (53) describes the dynamics of the gated range tracker for the case of two integrators in the

track loop is the basis for the deterministic stability analysis to follow. This analysis parallels that of Section

2.2, which applies under the assumption of a single integrator in the track loop.

3.2. Stability Analysis of Model DT2

In this section. stability of equmilibriutmt points of MIodel DT2 with periodic received signal is considered. As

in Section 2.2, however. a track point of the AGC-aided range tracker need not correspond to an equilibrium
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point of the state space model (Eq. (53)). Recall that a track point is any trajectory of the model for which
p[k] = a constant for all k. It is clear from Eq. (53) that constants p* for which

Tl

IE(a, k)l 2 wD(u - p*)do, = 0 for all k, (54)
-T,

and corresponding trajectories of Eq. (53) for which p[k] = p* = pd[k] and v[k] = 0 for all k, are track
points according to this definition. Unlike the situation in Section 2, however, these need not be the only
track points. Next, we focus attention on equilibrium point stability of the model of Eq. (53) under the
assumption of a periodic received voltage E(t).

Suppose that assumption in Eq. (20) holds, i.e., that E(T, k) = E(r, 0) = Eo(r) for all k. Then Eq. (53)
simplifies to

Model DT2 for Periodic Received Waveform:

p[k + 1] = p&k] + TPRt v[k]

T.
+132 TPRI(92 + 0.591 TpRt)e 2Vdfk] j Eo(u)12 WD(9 - pd[k]) du (55a)

-T,

pd[k + 1] = p[k] (55b)

V[k + 1] = V[k] + TPRI (13 e d[ , I E0o(o)12 WS (r - pd[k]) do, - 1) (55c)

Vd[k + 1] =V[k] (55d)

Tl
v[k + 1] = v[k] + g9 /32 Tpnte- 2 Vd[k] J lEo(u)12 WD(U- pd[k]) da. (55e)

-T,

To be an equilibrium point of Eq. (55), a vector (p,*p,*V,*V,*v*) must satisfy the following three conditions:

Tlj IE0((o)12 WD(u - p*) do, = 0 (56a)
-T,

132 e-2V j JEo(cx)2 ws(a - p*) da - 1 = 0 (56b)
-T.

u* = 0. (56c)

Denote the Jacobian matrix of the right side of Eq. (55) at such an equilibrium point by J. This matrix
is given by

1 i12 0 0 il5

1 0 0 0 0

fJ := ° i32 1 i34 0 (57)
O 0 1 0 0

( J52 0 0 1
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where the scalars J12. ji5, j32, j34. j52 are defined as follows:

j12 := (92 + 0.59iTPRI),3 TPRIe 2v FD(P*) (58a)

j15 := TPRI (58b)

h,3 : TA-G FS (p*) (58c)
TAGC

- 20 2 TPRIe 2V* F (*) (58d)
TAGC

52 91 (58e)
(2 + 0. 5gTpRI)

respectively. Here the notation FD, Fs defined in Eq. (22) has been used. Note that j32 and j34 equal.
respectively, b and c of Eq. (25). The characteristic polynomial of the matrix J is readily computed by
cofactor expansion along the last row, yielding

det(AI - J) = (A2 - A - j 3 4 )[A 3- 2A2 + (1 - j12 )A + 312 - j 15352Y (50)

Define the quadratic polynomial q1(A) and the cubic polynomial q2 (A) as

q1(A) := A2 -A-j 3 4 , and (60a)

q2(A) := A3 - 2A 2 + (1 - j 12)A + j12 - j15J52 (60b)

respectively. Then the matrix J is stable (in the discrete-time sense) if and only if all the zeros of the
polynomials qi and q2 have magnitude strictly less than 1. The condition for this to hold for the polynomnial
qi (A) has already obtained, as can be seen by noting that q1 (A) = pi (A) of Eq. (26). Recall that the sufficient
condition is simply (C3), i.e.,

TAGC > 2TpRI. (61)

and that this was obtained by invoking Lemma 1 (Jury's test for second-order systems). The analogous
stability test for third-order systems, Lemma 2 below, is used in considering q2 (A).

Lemma 2 (Jury's Test for Third-Order Systems) A necessary and sufficient condition for the zeros of the
polynomial

q(A) = a3 A 3 + a2A
2 + ajA + aO (62)

(a3 > 0) to lie within the unit circle is
q(1) > 0, (63a)

la(l1 < a3, (631))

q(-1) < 0, and (63c)

la[20 _a21 > la(a2 - ala1. (63d)

Next we apply Lemma 2 to the polynomial q2(A). Equation (63a) is found to assert j12 < 0. i.(.

F',(p) < 0. (64)

Thus Condition (C1) appealrs in this (Ontext as well.
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Equation (63b) in this context asserts

j12 - 3lj5521 < 1, (65)

which is found to be tantamount to the following:

TPRI 192 -0.5 TpRIg lI + Fs(p*) < ° Condition (q2)'
FDh(P*)Codto(2)

We refer to this condition as (C2)' since it reduces to Condition (C2) for vanishing gj.

Equation (63c) asserts
2j12 - j15j52 < 4, (66)

which can be seen to be automatically satisfied whenever (Cl) holds.

Finally, Eq. (63d) asserts

I(i12 - j15j52)2 - 11 > 12jl5j52 - j12 - 11. (67)

After substitution from Eq. (58) and simplification, this is found to be equivalent to

1(92 + 1.5TpRmgj)2 ( I) 2
-) 1

> 1(92 - 1.5TpRIg) F3 (p) + l| Condition (C4)'

Conditions (Cl), (C2)', (C3) and (C4)' are therefore necessary and sufficient for stability by the linear

approximation of an equilibrium point of Eq. (55). This is summarized in the next theorem.

Theorem 3 (Stability for Model DT2). Under assumption in Eq. (20), the equilibrium point (p* p*, V,*V7, v* )

(p,*p,*V,*V,*O) of Eq. (55) is asymptotically stable by the linear approximation if and only if conditions (CI),

(C2)' (C3) and (C4)' above hold.

3.3. Approximate Continuous-Time Model CT2

Model CT2

The fifth-order model Eq. (53), Model DT2, may be approximated by a third-order continuous-tinie

model, if TpRI is small. The derivation of the model is nearly identical to the derivation in Section 2.4, and

so it is omitted. The notation is also clear given the notation of Section 2.4. The resulting continullous-tinlc

model is

Model CT2:

dp(t) - v(t) + 12(92 + 0.5glTpRj)c 2 V(t)
dt

X J TIF (cx - TpRI + [ ITPRI) 2 7JD(cx - p(t))dcx. (68a)
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TAGC () = 2 e 2 V(t) T E -TPRI+ [T ] TPRI) ws(- p(t))dcT-1, (68b)

d() = g1 j2-2V(t) £ E (- TPRI + T T TPRI) WD(O- p(t))dcx. (68c)

We refer to this as Model CT2.

If the received signal is periodic with period TpB.I, Eq. (68) simplifies to:

Model CT2 for Periodic Received Waveform:

dp(t) = v(t) + 2 (92 + 0.5gTTpRI)c 2V(t) J Eo(a)1 2 WD(cx - p(t)) dcx, (69a)

TAGC d() - 0 2 e-2V(t) Jl lEo (g) 2 ws(, - p(t)) dcx - 1, (69b)

di,' (t) [T
dt - gi32 2e 2 V(t) I Eo (a)l 2 cWD (c - p(t)) dc. (69c)

Equation (69) should be compared to Eq. (46), which applies under the analogous assumptions for the case
of a single integrator in the track loop.

Stability Analysis of Model CT2

The Jacobian matrix J of Eq. (69) evaluated at an equilibrium point (p,*V,*v* = 0) is given by

till O 1 

.Z= j21 i22 , (70)
j31 0 0

where
il :=(92 + 0.5gyTpR)I e FD(P*) (71a)

j21 := - Tr FS(P) (71b)

322 Fs=- T FS (P*) (71c)
TAGCC

.31 := g12C-2c FD (P*). (71d)

The characteristic polynonmial of J is, after sonme simplification, found to be

A C3 + 2 (92+ 0.5g, TPRI) FD (p*) A2

TAGCc Fs (p*)})

+ ( -T_2 (92 + 0.591TPRI)) c A

2g1 FD(P (72).

TAGC FS(P*)
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Condition (Cl) is clearly necessary for all the coefficients in this polynomial to be positive, which is the
first requirement for a cubic polynomial to be stable in the continuous-time sense (entailing that all the zeros
have strictly negative real parts). The second requirement, for an arbitrary polynomial with real coefficients
A3 + a 2 A2 +alA + ao, is that ala 2 > ao. For Eq. (72), this is automatically satisfied for any 91 > 0, given
that (Cl) holds. Therefore, we arrive at the following result.

Theorem 4 (Stability for Model CT2). The equilibrium point (p,*V,*O) of the approximate continuous-time
model Eq. (69) is asymptotically stable by the linear approximation if and only if (Cl) holds there.

4. CONCLUSIONS

A new class of models has been presented for AGC-aided gated range trackers. The models are nonlinear
and allow for statistical variation of the received signal. The utility of the models has been demonstrated
by deriving, for each model, criteria for deterministic stability of track points within a range gate. These
criteria may be used to determine whether or not the range tracker can converge on a target. or possiblly
on an artificial centroid target. The stability of a centroid track point and the resolving power of a range
tracker were analyzed in an example involving two closely spaced identical point targets. The result was
considered in the light of a previous conclusion based on ambiguity functions.

Extensions of the work in at least two directions are important. First, the models shllold be analyzed
under stochastic target return conditions. That is, the stochastic stability of track point should he studied.
Here, the signal E is a stochastic process, the models become stochastic difference or differential equations.
and pathwise analysis must be replaced by a statistical description of tracker behavior. A seconcl extension of
the work would be concerned with the interaction between tracking in angle and range. an(l would begin by
expanding the models of this paper to account for the angle tracking servo-loops. Note that several authors
have considered angle tracking performance in multiple target conditions using dynamical modeling of the
angle tracking servo-loops and stability analysis [12, 13, 14].
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